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DYNAMIC FRACTURE ANALYSIS BY DYNAMIC MOIRE INTERFEROMETRY

K. Arakawa*, R.H. Drinnon, Jr.*, M. Kosai**" and A.S. Kobayashi****

ABSTRACT

Dynamic moire interferometry was used to measure separately the u- and v-displacement
fields surrounding a rapidly propagating crack tip in Homalite-100 and 7075-T6 aluminum
alloy plates. This transient crack tip displacement data was then used to compute the
dynamic stress intensity factor and the remote stress component. J-integral values was
also estimated using the static approximate procedure, of-K2arg--et- al. This static analysis
provided the correct J when the contour integral was taken within 3 mm of the crack tip

INTRODUCTION

For the past two decades, brittle polymers have been used as a model material for
identifying the dynamic fracture parameter(s) which govern rapid crack propagation. The
two most popular experimental techniques used for such studies were the whole field
techniques of dynamic photoelasticity [1,21 and dynamic caustics [3,4,51. A third whole
field technique, i.e. dynamic moire technique, was never developed to the sophistication of
photoelasticity and caustics despite its early use in the mid 60's [6,71. More recently,
static moire technique, with detailed error analysis, has been used to determine the
stress intensity factor (SIF) [8]. Static moire interferometry and geometric moire
techniques have also been used to study the path independency of the J-integral and the
validity of the HRR field in elastic-plastic fracture mechanics [9,10].

This paper reports on an experimental procedure for extracting the dynamic SIF and
remote stress component from the transient crack-tip displacement field of a rapidly
propagating crack in Homalite-100 and 7075-T6 aluminum alloy, single-edged notched
(SEN) specimens.
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THEORETICAL BACKGROUND

Dynamic Crack Tip Displacement Field

The asymptotic crack tip displacement field for a constant velocity crack is given as an
infinite series in Reference [11]. When such a higher order series of the crack tip
displacement equations is used in the data reduction procedure for SIF determination, a
large number of displacement measurements from a large crack tip region is needed. In
dynamic analysis, however, the data points from a large crack tip region will mask the
pos? ,le small but sharp transient stress gradients within this region as demonstrated by
an error analysis in Reference [12]. On the other hand, the inevitable caustics as well as
the possible nonlinear zone surrounding the crack tip exclude the use of the very-near
crack-tip data thus limiting the available crack tip region for data analysis to a narrow
ring region surrounding the crack tip. In view of the above, only the 1/4-r term in the
crack tip stress field and the constant term, or the two displacement terms involving thedyn dyn
dynamic stress intensity factor and the remote stress component, KaI and o ox
respectively were consideed in this study. In terms of a polar coordinate, (r, 0), with
the origin at the moving crack tip, the displacement parallel and perpendicular to the
crack tip, u and v, can be represented as [11];

Kyn 131(c) r 1

u cos 2 1 + 2  °2

12

1 dyn {rl cosei - 1 2 r2 cose 2 }
+ 2Bcox 13(c) 2(1

dyn Lr21

K, 131(c) 2 , f(
v= -01r sin + 2 r2  sin

dy" 1+ 102

+ yn _ l) rlsinel + -r2.sin02(2
2g--Ox •B()20 2 (2

NT!S C'tA.-

where ; i

By -
Di-t 4-

2t2,



C2 C2

C2

rjei -- x + ifjy

BI(c) = 2)2 (3)

x and y are the orthogonal coordinates with its origin at the moving crack tip, Ci and C2
are the dilatational and distortional wave velocities, respectively, C is the crack velocity.
and t. is the shear modulus.

Note that for the asymptotic equations of Equations (1) and (2) to be valid, r < d/10 where
d is the governing characteristic length which is normally the crack length or the
remaining ligament, whichever is smaller, of a fracture specimen.

Dynamic Crack Curving and Branching

The physical significance of the remote stress component, a dy, in linear elasto-dynamic

fracture mechanics is its influence on crack curving and crack branching. The mechanics
of elastic crack curving as well as crack branching was studied by one of the authors and
his colleague [13,141. The dynamic crack curving criterion postulates that the state of
stress ahead of a crack tip dictates the direction of crack propagation. The crack curving
criterion thus assumes that when the circumferential stress within a prescribed crack tip
region attains a maximum value off the axis of a self-similar crack extension, crack
curving will occur. This maximum condition, which is based on linear elasto-dynamic
fracture mechanics (LEFM), results in a characteristic crack tip distance, ro, in which the
propagating crack will deviate from its axis. For a crack propagating at a constant
velor'-y, this value is

ro = I Vo(C,C 1 ,C2)]2 (4)1 28n o

where

V°(CClC 2) = B1 (C) -(1+ 5 (2-31) -412(14+302)-1601(1-2)2 +16(1+01)} (5)

The elastic crack curving criterion requires that ro < rc for the crack to curve away from
its axis where rc is a material constant which specifies the characteristic crack tip
region in which the c'f-axis micro-cracks enlarge and e, onnect to the main crack iup. The
angular deviation of the crack from its original direction of self-similar crack extension
is given in [131.
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dy
In the presence of a large driving force, i.e. a large K the crack will bifurcate in order
to shed the excess driving force and thus results in crack branching where the crack
branching angle is governed by the crack curving criterion. This crack branching criterion
was used successfully to correlate the predicted and measured crack branching angle and
the estimated crack branching stress intensity factor, KIB, [14].

J-estimation Procedure

While the GOD approach based on Equations (1) and (2) is the preferred procedure for.yn
obtaining K I , often the COD in the vicinity of the crack tip is obscured by the caustics
and its trailing plastic zone. On the other hand, the J-integral approach, which
circumvents this effect of small-scale yielding, requires simultaneous measurements of
the u and v fields [9,101 as well as the particle velocity and acceleration within the
contour of integration [111. These requirements are extremely difficult to satisfy
experimentally and thus the feasibility of using the "static J-estimation" procedure was
explored in this paper.

The static J-estimation procedure consists of approximating the two dimensional states
of stress and strain with uniaxial states of stress and strain. For a SEN specimen shown
in Figure 1, this replacement provides the exact J if the contour integration is taken along
the specimen boundaries and the crack faces. If the two horizontal paths in Figure 1 are
sufficiently remote from the crack tip and if the SEN specimen is subjected to a simple
loading, then this replacement also provides the exact states. Thus the J evaluated along
the most remote contour in Figure 1 using the static J-estimation procedure will yield
the correct static J-integral. Some of the mathematical expressions associated with the
J-estimation procedure are listed in the following.

For plane problems governed by nonlinear elasticity and deformation plasticity, the static
J-integral along the traction-free vertical edges of segments 12 and 3A in Figure 1 is:

Jv=JfZ+34 W dy = (T-Wi AY) 1 2 + (-Wi AYi) 3 4  (5)

where i is the ith segment of the contour and W is the strain energy density.

If horizontal segment 2a is sufficiently far away from the crack, we can assume that the
shear stress, "xy, and the x-direction variations in the displacement u are negligible along
the segment 2a. Equation (1) along segment 2a thus becomes:

Jh= Ty a a-jdx = T.,:yy. i Axi 2 3  (6)

where Ty is the surface traction in the y-direction.

Finally, the total J-integral value is given by:

J - 2(Jv + J) (7)

To reiterate, while the approximate static J-integral in general will not yield the correct
J-integral value associated with a propagating crack, the slow crack velocity of
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C/C1 < 0.1 and u small integration contour should increase the possibility of obtaining a
reasonable estimate of the J-value.

EXPERIMENTAL PROCEDURE

Specimen

Figure 1 shows the Homalite-100 and 7075-T6 aluminum alloy SEN specimen used in t:is
study. The abundant dynamic fracture data on Homalite-100 [1,12] provided a basis for
assessing the accuracy of the proposed dynamic fracture analysis by moire
interferometry. The initial crack of 25.4 mm in length was sharpened by chevron notching
the tip with a razor blade. Crossed moire gratings of 600 lines/mm for the Homalite-100
SEN specimen were transferred to the specimens using the procedure developed by Post
[15]. Crossed moire gratings of 150 lines/mm were used for 7075-T6 aluminum alloy SEN
specimens.

Test Setup

The SEN specimens were loaded to failure in a hydraulic tensile testing machine. A two
beam moire interferometry setup [15] was used to generate a reference grating of 1200
and 300 lines/mm for the Homalite-100 and 7075-T6 SEN specimens, respectively. These
reference gratings interferred with the first order diffracted light from the specimen
grating and effectively accomplished a 2X fringe multiplication of the specimen grating.

Four transient moire patterns were recorded by a specially configured IMACON 790 image
converter camera. The image converter camera was triggered when the crack severed a
line of conducting paint ahead of the crack tip. Unlike previous static analyses [9,10], the
u- and v-displacement fields could not be recorded simultaneously due to the limited
resolution of the camera. Thus a series of separate fracture tests, in which either the u-
or the v-displacement field was recorded, were necessary to completely characterize the
transient displacement field.

Data Reduc ion

As mentioned previously, only data from the near crack-tip field were used to determine
the pertinent linear elasto-dynamic fracture parameters in this study. Thus an optimumdy yn
orientation of a radial line, along which K, and ox could be determined accurately, was
sought through a trial-and-error process. The moire fringe distributions in Figure 2
indicated that 0 = 1000 to 1600 for the u-field and 0 = 1600 to 1800 for the v-field
appeared suitable for such purpose. At 0 = 1800 or along the crack surface, Euations 1)
and (2) show that the u- and v-displacement fields will yield only a ox Kf K-I
respectively.

A sensitivity study using Equation (2) also shows that in the preferred regign of 6 = 1000
to 1800, the v-displacement field is less sensitive to the variation in ox . Thus the
optimum 6 values:

dyn1) For K, determination alone, 0 = 1800 using the v-field.
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dyn dyn

2) For K1  and aox determination, e = 120 to 1500 using the u-displacement

field.

The approximate J-integral values were evaluated along square contours with the crack
tip in the center of the square using the static estimation procedure of Equation (6). The
half-side length of the square contours varied from r = 3 to 10mm. The J-integral value
is then equated to the strain energy release rate from which an approximate SIF can be
derived. Error assessment of this static estimation procedure can be made by comparing
the resultant SIF with K y n obtained by the COD procedure.

RESULTS

Figure 2 shows typical moire fringe patterns of the u- and v- displacements of 0o
fracturin Homalite-100 SEN specimens. These moire fringes were used to determine K I

and a oy following the data reduction procedure described above. Specifically, the two
adjacent moire fringe data at a radial distance of about r = 3 mm along a 0 = const. radial
line were used to evaluate Kyn dyn his study.and aox in thstuy

Figure 3 shows plots of Kdyn versus crack velocity data obtained from the u- and v-
vyn

displacement data. Also shown is the average K I versus crack velocity relation, which
was obtained nearly two decades ago [12], for the same batch of Homalite-100. Figure 4
shows the variations in oao , which were obtained from the u-displacement data at four
crack tip locations in three specimens.

vdyn dyn
The combined K1 and aox were then substituted into the Equations (4) and (5) to check
for possible crack curving and crack branching. The computed ro for the data points in
Figures 3 and 4 ranged from 10 mm to 40 mm which is much larger than the rc = 1.3 mm
obtained previously in [131. Thus crack curving in these specimns was not a possibility.
Needless to mention, crack branching, was precluded due to K1 <<KIB where KIB = 2.05
MPa'-m[14] and Kic = 0.64 MPa[-[121.

Figure 5 shows a typical transient Moire interferometry pattern corresponding to the u-
displacement field in a fracturing 7075-T6 aluminum alloy SEN specimen. The moire
fringe pattern for the v-displacement field, while sufficiently visible for data reduction,
was blurred by the small but distinct wake of the crack tip plastic zone and is not
presented here. Only two specimens were tested and thus the available data was not
sufficient to construct a K I versus crack velocity curve. Also, to the authors'
knowledge, no dynamic characterization of thin 7075-T6 aluminum alloy sheets is
available for comparison with thq limited data obtained in this study. The tests (Figured yn oyn
5) yielded K, = 94 MPa'i-and Gox = 62 MPa4'-. The former is about 1.6 times the Kic =
58 MPa4fm and is consistent with the fact that the transient moire fringes were recorded
immediately after the crack propagated from the somewhat blunt starter crack.

Figure 6 shows the variations in the normalized KI obtained from an elastic analysis using
the approximate J, which was calculated using Equation (7), with the size of the J-
integral square contour for the Homalite-100 7075-T6 SEN specimens. The distance r in
this figure represents one-half length of the side with the crack tip at the center of the
square. The KI, which was obtained through the J-integral, was normalized with the K Iyn

which was obtained by the COD procedure. This figure shows that the static approximate
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J-integral can be used to estimate the KdI if the contour is sufficiently small, i.e. r = 3
mm. Obviously this conclusion will differ for a crack running at a higher velocity and
with the presence of a dominant biaxial stress field.

DISCUSSIONS
dn dyn

The Kdyn and ax extraction procedure described in this paper is a straight forward use of
the dynamic moire interferometry data. In practice, however, the caustics of the crack
tip and trailing plastic zone in a somewhat ductile fracture specimen, such as 7075-T6
aluminum alloy, would obscure the moire fringes needed in deducing these fracture
parameters using the COD procedure described here. For such cases, an "elastic analysis"
using the approximate J-integral procedure may be more convenient to use as long as the
integration contour can be made sufficiently small. When a power hardening stress-strain
relation is used in place of the elastic analysis, the approximate J-integral will also
provide a moderate plasticity correction provided the plasticity is limited to small scale
yielding [9.10].

CONCLUSIONS

1. Dynamic moire interferometry can be used to determine the dynamic fracture

parameters, such as K dyn and adyn

2. If u- and v-field displacements cannot be obtained simultaneously, then the u-
displacement field is preferred for obtaining both Kay n and aox simultaneously. For
KI  determination alone, the v-field displacement will suffice.

dyn3. The static J-approximation procedure can be used to estimate Kd Ifor a crack
propagating at a moderate velocity.
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(a) u-displacement Field

(b) v-displacement Field
Figure 2. Transient Moire Fringe Patterns in a Fracturing Homalite-100 Specimen.
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